Shortest Paths

* Usually, the highway structure can be represented by graphs with vertices representing cities and edges representing sections of highways.
* Edges may be assigned weights to represent the distance or the average driving time between two cities connected by a highway.
* Often, for most drivers, it is desirable to find the shortest path from the originating city to the destination city.

Single-Source Shortest Paths

 Given: A single source vertex in a weighted, directed graph.*Want to compute a shortest path for each possible destination.

- Similar to BFS.
* We will assume either
- no negative-weight edges, or
- no reachable negative-weight cycles.
-Algorithm will compute a shortest-path tree.

Dijkstra's Algorithm

Assumes no negative-weight edges.

Maintains a set S of vertices whose SP from s has been determined epeatedly selects u in V-S with minimum SP estimate (greedy choic Store V-S in priority queue Q.

Initialize(G, s);
For each vertex v := V[G];

$$
\begin{gathered}
\text { Do d[v]:= } \varnothing \\
\text { Pi[v]:=NIL }
\end{gathered}
$$

Relax (u,v,w)

if $d[v]>d[u]+w[u, v]$; then $\mathrm{d}[\mathrm{v}]:=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$

$$
\operatorname{Pi}[\mathrm{v}]:=\mathrm{u}
$$

Initialize(G, s); S : = \varnothing;
Q := V[G];
while $\mathrm{Q} \neq \varnothing$ do
u := Extract-Min(Q);

$$
S:=S \cup\{u\}
$$

for each $v \in \operatorname{Adj}[u]$ do
Relax(u, v, w) od
od

Example

Example

Example

Example

Example

Example

Analysis of Dijkstra Algorithm

-The running time of Dijkstra algorithm depend on how the min-priority queue is implemented
-If we implement the min-priority queue with binary heap , then
>Each EXTRACT-MIN operations takes $\mathrm{O}(\mathrm{lg} \mathrm{V})$ time and there are $|\mathrm{V}|$ such operation.
$>$ Each DECREASE-KEY operation takes time O(lg V), \& there are still at most $|E|$ such operations.
$>$ There are the total running time is
$=O(V \lg V)+O(E \lg V)=O(E \lg V)$

Application

-Shortest path algorithms are applied to automatically find directions between physical locations, such as driving directions on websites like Google Map

Scope of Research

Computing Many-to-Many Shortest Paths Using Highway Hierarchie

Assignment

Q.1)What is single source shotest path? Q.2)What is negative weight cycle in a graph? Q.3)Explain Dijkstr algorithm with example.

